首页> 外文OA文献 >High-fidelity CZ gate for resonator-based superconducting quantum computers
【2h】

High-fidelity CZ gate for resonator-based superconducting quantum computers

机译:基于谐振器的超导量子阱的高保真CZ门   电脑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

A possible building block for a scalable quantum computer has recently beendemonstrated [M. Mariantoni et al., Science 334, 61 (2011)]. This architectureconsists of superconducting qubits capacitively coupled both to individualmemory resonators as well as a common bus. In this work we study a naturalprimitive entangling gate for this and related resonator-based architectures,which consists of a CZ operation between a qubit and the bus. The CZ gate isimplemented with the aid of the non-computational qubit |2> state [F. W.Strauch et al., Phys. Rev. Lett. 91, 167005 (2003)]. Assuming phase or transmonqubits with 300 MHz anharmonicity, we show that by using only low frequencyqubit-bias control it is possible to implement the qubit-bus CZ gate with 99.9%(99.99%) fidelity in about 17ns (23ns) with a realistic two-parameter pulseprofile, plus two auxiliary z rotations. The fidelity measure we refer to hereis a state-averaged intrinsic process fidelity, which does not include anyeffects of noise or decoherence. These results apply to a multi-qubit devicethat includes strongly coupled memory resonators. We investigate theperformance of the qubit-bus CZ gate as a function of qubit anharmonicity,indentify the dominant intrinsic error mechanism and derive an associatedfidelity estimator, quantify the pulse shape sensitivity and precisionrequirements, simulate qubit-qubit CZ gates that are mediated by the busresonator, and also attempt a global optimization of system parametersincluding resonator frequencies and couplings. Our results are relevant for awide range of superconducting hardware designs that incorporate resonators andsuggest that it should be possible to demonstrate a 99.9% CZ gate with existingtransmon qubits, which would constitute an important step towards thedevelopment of an error-corrected superconducting quantum computer.
机译:可扩展量子计算机的一种可能的构建基块最近已被证明[M. Mariantoni et al。,Science 334,61(2011)]。这种架构包括电容耦合到单个存储器谐振器以及公共总线的超导量子位。在这项工作中,我们研究了针对此以及相关的基于谐振器的架构的自然本征纠缠门,该纠缠门由量子位和总线之间的CZ操作组成。 CZ门的实现是借助非计算量子位| 2>状态[F. W.Strauch等,Phys。牧师91,167005(2003)]。假设相位或跨谐波的非谐波频率为300 MHz,我们表明,仅使用低频量子比特偏置控制,就有可能在约17ns(23ns)的保真度内实现99.9%(99.99%)保真度的qubit-bus CZ门,而实际的两个参数pulseprofile,加上两个辅助z旋转。我们这里所说的保真度度量是状态平均的内在过程保真度,它不包括噪声或退相干的任何影响。这些结果适用于包括强耦合存储谐振器的多量子位器件。我们研究了量子比特总线CZ门作为量子比特非谐函数的性能,确定了主要的固有误差机制并得出了相关的保真度估算器,量化了脉冲形状灵敏度和精度要求,模拟了由总线谐振器介导的量子比特-量子比特CZ门,并尝试对系统参数(包括谐振器频率和耦合)进行全局优化。我们的结果与包含谐振器的广泛的超导硬件设计有关,并且建议应该有可能使用现有的跨量子位来演示99.9%的CZ门,这将构成向错误校正的超导量子计算机发展的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号